Tag Raam Uzdin

On the equivalence of lossy evolution and POVM generalized quantum measurements

Raam Uzdin

Loss induced generalized measurements have been introduced years ago as a mean to implement generalized quantum measurements (POVM). Here the original idea is extended to a complete equivalence of lossy evolution and a certain widely used class of POVM. This class includes POVM used for unambiguous state discrimination and entanglement concentration. One implication of this equivalence is that unambiguous state discrimination schemes based on PT-symmetric and non-Hermitian Hamiltonians have the same performance as those of standard POVM. After discussing several key points of this equivalence we illustrate our findings in two elementary physical realizations. Finally, we discuss several implications of this equivalence.

http://arxiv.org/abs/1307.3927
Quantum Physics (quant-ph)

Resources needed for non-unitary quantum operations

Raam Uzdin

Non-unitary operations generated by an effective non-Hermitian Hamiltonian can be used to create quantum state manipulations which are impossible in Hermitian quantum mechanics. These operations include state preparation (or cooling) and non-orthogonal state discrimination. In this work we put a lower bound on the resources needed for the construction of some given non-unitary evolution. Passive systems are studied in detail and a general feature of such a system is derived. After interpreting our results using the singular value decomposition, several examples are studied analytically. In particular, we put a lower bound on the resources needed for non-Hermitian state preparation and non-orthogonal state discrimination.

http://arxiv.org/abs/1212.4584
Quantum Physics (quant-ph)

A third-order exceptional point e ect on the dynamics of a single particle in a time-dependent harmonic trap

Raam Uzdin, Emanuele Dalla Torre, Ronnie Kosloff, Nimrod Moiseyev

The time evolution of a single particle in a harmonic trap with time dependent frequency omega(t) is well studied. Nevertheless here we show that, when the harmonic trap is opened (or closed) as function of time while keeping the adiabatic parameter mu = [d omega(t)/dt]/omega(t)^2 fixed, a sharp transition from an oscillatory to a monotonic exponential dynamics occurs at mu = 2. At this transition point the time evolution has a third-order exceptional point (EP) at all instants. This situation, where an EP of a time-dependent Hermitian Hamiltonian is obtained at any given time, is very different from other known cases. Our finding is relevant to the dynamics of a single ion in a magnetic, optical, or rf trap, and of diluted gases of ultracold atoms in optical traps.

http://arxiv.org/abs/1212.3077
Quantum Physics (quant-ph); Quantum Gases (cond-mat.quant-gas)

Time-dependent Hamiltonians with 100% evolution speed efficiency

Raam Uzdin, Uwe Guenther, Saar Rahav, Nimrod Moiseyev

The evolution speed in projective Hilbert space is considered for Hermitian Hamiltonians and for non-Hermitian (NH) ones. Based on the Hilbert-Schmidt norm and the spectral norm of a Hamiltonian, resource-related upper bounds on the evolution speed are constructed. These bounds are valid also for NH Hamiltonians and they are illustrated for an optical NH Hamiltonian and for a non-Hermitian \(\mathcal{PT}\)-symmetric matrix Hamiltonian. Furthermore, the concept of quantum speed efficiency is introduced as measure of the system resources directly spent on the motion in the projective Hilbert space. A recipe for the construction of time-dependent Hamiltonians which ensure 100% speed efficiency is given. Generally these efficient Hamiltonians are NH but there is a Hermitian efficient Hamiltonian as well. Finally, the extremal case of a non-Hermitian non-diagonalizable Hamiltonian with vanishing energy difference is shown to produce a 100% efficient evolution with minimal resources consumption.

http://arxiv.org/abs/1207.5373

Quantum Physics (quant-ph)