Raam Uzdin

Non-unitary operations generated by an effective non-Hermitian Hamiltonian can be used to create quantum state manipulations which are impossible in Hermitian quantum mechanics. These operations include state preparation (or cooling) and non-orthogonal state discrimination. In this work we put a lower bound on the resources needed for the construction of some given non-unitary evolution. Passive systems are studied in detail and a general feature of such a system is derived. After interpreting our results using the singular value decomposition, several examples are studied analytically. In particular, we put a lower bound on the resources needed for non-Hermitian state preparation and non-orthogonal state discrimination.

http://arxiv.org/abs/1212.4584

Quantum Physics (quant-ph)