Light propagation in periodically modulated complex waveguides

Sean Nixon, Jianke Yang

Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown that for many non-parity-time (PT) symmetric waveguides, their linear spectrum is partially complex, thus light exponentially grows or decays upon propagation, and this growth or delay is not altered by nonlinearity. However, several classes of non-PT-symmetric waveguides are also identified to possess all-real linear spectrum. In the nonlinear regime longitudinally periodic and transversely quasi-localized modes are found for PT-symmetric waveguides both above and below phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial conditions.
Optics (physics.optics); Pattern Formation and Solitons (nlin.PS)

Add Your Comments