June 2013
Mon Tue Wed Thu Fri Sat Sun
« May   Jul »

Day June 7, 2013

The Sign Problem, PT Symmetry and Abelian Lattice Duality

Peter N. Meisinger, Michael C. Ogilvie

Lattice field theories with complex actions are not easily studied using conventional analytic or simulation methods. However, a large class of these models are invariant under CT, where C is charge conjugation and T is time reversal, including models with non-zero chemical potential. For Abelian models in this class, lattice duality maps models with complex actions into dual models with real actions. For extended regions of parameter space, calculable for each model, duality resolves the sign problem for both analytic methods and computer simulations. Explicit duality relations are given for models for spin and gauge models based on Z(N) and U(1) symmetry groups. The dual forms are generalizations of the Z(N) chiral clock model and the lattice Frenkel-Kontorova model, respectively. From these equivalences, rich sets of spatially-modulated phases are found in the strong-coupling region of the original models.

High Energy Physics – Lattice (hep-lat)

Spectral and transport properties of time-periodic PT-symmetric tight-binding lattices

Giuseppe Della Valle, Stefano Longhi

We investigate the spectral properties and dynamical features of a time-periodic PT-symmetric Hamiltonian on a one-dimensional tight-binding lattice. It is shown that a high-frequency modulation can drive the system under a transition between the broken-PT and the unbroken-PT phases. The time-periodic modulation in the unbroken-PT regime results in a significant broadening of the quasi-energy spectrum, leading to a hyper-ballistic transport regime. Also, near the PT-symmetry breaking the dispersion curve of the lattice band becomes linear, with a strong reduction of quantum wave packet spreading.

Quantum Physics (quant-ph)