Peter N. Meisinger, Michael C. Ogilvie

Lattice field theories with complex actions are not easily studied using conventional analytic or simulation methods. However, a large class of these models are invariant under CT, where C is charge conjugation and T is time reversal, including models with non-zero chemical potential. For Abelian models in this class, lattice duality maps models with complex actions into dual models with real actions. For extended regions of parameter space, calculable for each model, duality resolves the sign problem for both analytic methods and computer simulations. Explicit duality relations are given for models for spin and gauge models based on Z(N) and U(1) symmetry groups. The dual forms are generalizations of the Z(N) chiral clock model and the lattice Frenkel-Kontorova model, respectively. From these equivalences, rich sets of spatially-modulated phases are found in the strong-coupling region of the original models.

http://arxiv.org/abs/1306.1495

High Energy Physics – Lattice (hep-lat)