December 2012
Mon Tue Wed Thu Fri Sat Sun
« Nov   Jan »

Day December 26, 2012

Symmetry breaking in dipolar matter-wave solitons in dual-core couplers

Yongyao Li, Jingfeng Liu, Wei Pang, Boris A. Malomed

We study effects of the spontaneous symmetry-breaking (SSB) in solitons built of the dipolar Bose-Einstein condensate (BEC), trapped in a dual-core system with the dipole-dipole interactions (DDIs) and hopping between the cores. Two realizations of such a matter-wave coupler are introduced, weakly- and strongly-coupled. The former one in based on two parallel pipe-shaped traps, while the latter one is represented by a single pipe sliced by an external field into parallel layers. The dipoles are oriented along axes of the pipes. In these systems, the dual-core solitons feature the SSB of the supercritical type and subcritical types, respectively. Stability regions are identified for symmetric and asymmetric solitons, and, in addition, for non-bifurcating antisymmetric ones, as well as for symmetric flat states, which may also be stable in the strongly-coupled system, due to competition between the attractive and repulsive intra- and inter-core DDIs. Effects of the contact interactions are considered too. Collisions between moving asymmetric solitons in the weakly-symmetric system feature elastic rebound, merger into a single breather, and passage accompanied by excitation of intrinsic vibrations of the solitons, for small, intermediate, and large collision velocities, respectively. A PT-symmetric version of the weakly-coupled system is briefly considered too, which may be relevant for matter-wave lasers. Stability boundaries for PT-symmetric and antisymmetric solitons are identified.

Quantum Gases (cond-mat.quant-gas); Pattern Formation and Solitons (nlin.PS)

PT-symmetry with a system of three-level atoms

Chao Hang, Guoxiang Huang, Vladimir V. Konotop

We show that a vapor of multilevel atoms driven by far-off resonant laser beams, with possibility of interference of two Raman resonances, is highly efficient for creating parity-time (PT) symmetric profiles of the probe-field refractive index, whose real part is symmetric and imaginary part is anti-symmetric in space. The spatial modulation of the susceptibility is achieved by proper combination of standing-wave strong control fields and of Stark shifts induced by a far-off-resonance laser field. As particular examples we explore a mixture of isotopes of Rubidium atoms and design a PT-symmetric lattice and a parabolic refractive index with a linear imaginary part.

Optics (physics.optics)