K. Nireekshan Reddy, Subhrajit Modak, Kumar Abhinav, Prasanta K. Panigrahi
Systems governed by the Non-linear Schroedinger Equation (NLSE) with various external PT-symmetric potentials are considered. Exact solutions have been obtained for the same through the method of ansatz, some of them being solitonic in nature. It is found that only the unbroken PT-symmetric phase is realized in these systems, characterized by real energies.
http://arxiv.org/abs/1402.5762
Quantum Physics (quant-ph)
Bijan Bagchi, Subhrajit Modak, Prasanta K. Panigrahi
The relevance of parity and time reversal (PT)-symmetric structures in optical systems is known for sometime with the correspondence existing between the Schrodinger equation and the paraxial equation of diffraction where the time parameter represents the propagating distance and the refractive index acts as the complex potential. In this paper, we systematically analyze a normalized form of the nonlinear Schrodinger system with two new families of PT-symmetric potentials in the presence of competing nonlinearities. We generate a class of localized eigenmodes and carry out a linear stability analysis on the solutions. In particular, we find an interesting feature of bifurcation charaterized by the parameter of perturbative growth rate passing through zero where a transition to imaginary eigenvalues occurs.
http://arxiv.org/abs/1307.7246
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Exactly Solvable and Integrable Systems (nlin.SI)