Tag Silvio Savoia

Tunneling of Obliquely-Incident Waves through PT-Symmetric Epsilon-Near-Zero Bi-Layers

Silvio Savoia, Giuseppe Castaldi, Vincenzo Galdi, Andrea Alú, Nader Engheta

We show that obliquely-incident, transversely-magnetic-polarized plane waves can be totally transmitted (with zero reflection) through epsilon-near-zero (ENZ) bi-layers characterized by balanced loss and gain with parity-time (PT) symmetry. This tunneling phenomenon is mediated by the excitation of a surface-wave localized at the interface separating the loss and gain regions. We determine the parameter configurations for which the phenomenon may occur and, in particular, the relationship between the incidence direction and the electrical thickness. We show that, below a critical threshold of gain and loss, there always exists a tunneling angle which, for moderately thick (wavelength-sized) structures, approaches a critical value dictated by the surface-wave phase-matching condition. We also investigate the unidirectional character of the tunneling phenomenon, as well as the possible onset of spontaneous symmetry breaking, typical of PT-symmetric systems. Our results constitute an interesting example of a PT-symmetry-induced tunneling phenomenon, and may open up intriguing venues in the applications of ENZ materials featuring loss and gain.

http://arxiv.org/abs/1401.1619
Optics (physics.optics); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

PT Metamaterials via Complex-Coordinate Transformation Optics

Giuseppe Castaldi, Silvio Savoia, Vincenzo Galdi, Andrea Alu’, Nader Engheta

We extend the transformation-optics paradigm to a complex spatial coordinate domain, in order to deal with electromagnetic metamaterials characterized by balanced loss and gain, giving special emphasis to parity-time (PT) symmetry metamaterials. We apply this general theory to complex-source-point radiation and unidirectional invisibility, illustrating the capability and potentials of our approach in terms of systematic design, analytical modeling and physical insights into complex-coordinate wave-objects and resonant states.

http://arxiv.org/abs/1210.7629

Optics (physics.optics)