Tag Prasanta K. Panigrahi

A study of PT-symmetric Non-linear Schroedinger Equation

K. Nireekshan Reddy, Subhrajit Modak, Kumar Abhinav, Prasanta K. Panigrahi

Systems governed by the Non-linear Schroedinger Equation (NLSE) with various external PT-symmetric potentials are considered. Exact solutions have been obtained for the same through the method of ansatz, some of them being solitonic in nature. It is found that only the unbroken PT-symmetric phase is realized in these systems, characterized by real energies.

http://arxiv.org/abs/1402.5762
Quantum Physics (quant-ph)

Tracking down localized modes in PT-symmetric Hamiltonians under the influence of a competing nonlinearity

Bijan Bagchi, Subhrajit Modak, Prasanta K. Panigrahi

The relevance of parity and time reversal (PT)-symmetric structures in optical systems is known for sometime with the correspondence existing between the Schrodinger equation and the paraxial equation of diffraction where the time parameter represents the propagating distance and the refractive index acts as the complex potential. In this paper, we systematically analyze a normalized form of the nonlinear Schrodinger system with two new families of PT-symmetric potentials in the presence of competing nonlinearities. We generate a class of localized eigenmodes and carry out a linear stability analysis on the solutions. In particular, we find an interesting feature of bifurcation charaterized by the parameter of perturbative growth rate passing through zero where a transition to imaginary eigenvalues occurs.

http://arxiv.org/abs/1307.7246
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Exactly Solvable and Integrable Systems (nlin.SI)

Supersymmetry and PT-Symmetric Spectral Bifurcation

Kumar Abhinav, Prasanta K. Panigrahi

Dynamical systems exhibiting both PT and Supersymmetry are analyzed in a general scenario. It is found that, in an appropriate parameter domain, the ground state may or may not respect PT-symmetry. Interestingly, in the domain where PT-symmetry is not respected, two superpotentials give rise to one potential; whereas when the ground state respects PT, this correspondence is unique. In both scenarios, supersymmetry and shape-invariance are intact, through which one can obtain eigenfunctions and eigenstates exactly. Our procedure enables one to generate a host of complex potentials which are not PT-symmetric, and can be exactly solved.

http://arxiv.org/abs/1011.0084
Quantum Physics (quant-ph)

Comment on “Comment on ‘Supersymmetry, PT-symmetry and spectral bifurcation’”

Kumar Abhinav, Prasanta K. Panigrahi

In “Comment on Supersymmetry, PT-symmetry and spectral bifurcation” \cite{BQ1}, Bagchi and Quesne correctly show the presence of a class of states for the complex Scarf-II potential in the unbroken PT-symmetry regime, which were absent in \cite{AP}. However, in the spontaneously broken PT-symmetry case, their argument is incorrect since it fails to implement the condition for the potential to be PT-symmetric: $C^{PT}[2(A-B)+\alpha]=0$. It needs to be emphasized that in the models considered in \cite{AP}, PT is spontaneously broken, implying that the potential is PT- symmetric, whereas the ground state is not. Furthermore, our supersymmetry (SUSY)-based ‘spectral bifurcation’ holds \textit{independent} of the $sl(2)$ symmetry consideration for a large class of PT-symmetric potentials.

http://arxiv.org/abs/1010.1909
Quantum Physics (quant-ph)