Tag Panayotis G. Kevrekidis

Kink scattering from a parity-time-symmetric defect in the \(\phi^4\) model

Danial Saadatmand, Sergey V. Dmitriev, Denis I. Borisov, Panayotis G. Kevrekidis, Minnekhan A. Fatykhov, Kurosh Javidan

In this paper, we study the \(\phi^4\) kink scattering from a spatially localized PT-symmetric defect and the effect of the kink’s internal mode (IM) is discussed. It is demonstrated that if a kink hits the defect from the gain side, a noticeable IM is excited, while for the kink coming from the opposite direction the mode excitation is much weaker. This asymmetry is a principal finding of the present work. Similar to the case of the sine-Gordon kink studied earlier, it is found that the \(\\phi^4\) kink approaching the defect from the gain side always passes through the defect, while in the opposite case it must have sufficiently large initial velocity, otherwise it is trapped by the loss region. It is found that for the kink with IM the critical velocity is smaller, meaning that the kink bearing IM can pass more easily through the loss region. This feature, namely the “increased transparency” of the defect as regards the motion of the kink in the presence of IM is the second key finding of the present work. A two degree of freedom collective variable model offered recently by one of the co-authors is shown to be capable of reproducing both principal findings of the present work. A simpler, analytically tractable single degree of freedom collective variable method is used to calculate analytically the kink phase shift and the kink critical velocity sufficient to pass through the defect. Comparison with the numerical results suggests that the collective variable method is able to predict these parameters with a high accuracy.

http://arxiv.org/abs/1411.5857
Pattern Formation and Solitons (nlin.PS)

Nonlinear stationary states in PT-symmetric lattices

Panayotis G. Kevrekidis, Dmitry E. Pelinovsky, Dmitry Y.Tyugin

In the present work we examine both the linear and nonlinear properties of two related PT-symmetric systems of the discrete nonlinear Schrodinger (dNLS) type. First, we examine the parameter range for which the finite PT-dNLS chains have real eigenvalues and PT-symmetric linear eigenstates. We develop a systematic way of analyzing the nonlinear stationary states with the implicit function theorem at an analogue of the anti-continuum limit for the dNLS equation. Secondly, we consider the case when a finite PT-dNLS chain is embedded as a defect in the infinite dNLS lattice. We show that the stability intervals of the infinite PT-dNLS lattice are wider than in the case of a finite PT-dNLS chain. We also prove existence of localized stationary states (discrete solitons) in the analogue of the anti-continuum limit for the dNLS equation.
Numerical computations illustrate the existence of nonlinear stationary states, as well as the stability and saddle-center bifurcations of discrete solitons.

http://arxiv.org/abs/1303.3298
Pattern Formation and Solitons (nlin.PS); Dynamical Systems (math.DS)