Jiangbin Gong, Qing-hai Wang

The time evolution of a system with a time-dependent non-Hermitian Hamiltonian is in general unstable with exponential growth or decay. A periodic driving field may stabilize the dynamics because the eigenphases of the associated Floquet operator may become all real. This possibility can emerge for a continuous range of system parameters with subtle domain boundaries. It is further shown that the issue of stability of a driven non-Hermitian Rabi model can be mapped onto the band structure problem of a class of lattice Hamiltonians. As an application, we show how to use the stability of driven non-Hermitian two-level systems (0-dimension in space) to simulate a spectrum analogous to Hofstadter’s butterfly that has played a paradigmatic role in quantum Hall physics. The simulation of the band structure of non-Hermitian superlattice potentials with parity-time reversal symmetry is also briefly discussed.

http://arxiv.org/abs/1412.3549

Quantum Physics (quant-ph)

Jiangbin Gong, Qing-hai Wang

The so-called parity-time-reversal- (PT-) symmetric quantum mechanics (PTQM) has developed into a noteworthy area of research. However, to date most known studies of PTQM focused on the spectral properties of non-Hermitian Hamiltonian operators. In this work, we propose an axiom in PTQM in order to study general time-dependent problems in PTQM, e.g., those with a time-dependent PT-symmetric Hamiltonian and with a time-dependent metric. We illuminate our proposal by examining a proper mapping from a time-dependent Schroedinger-like equation of motion for PTQM to the familiar time-dependent Schroedinger equation in conventional quantum mechanics. The rich structure of the proper mapping hints that time-dependent PTQM can be a fruitful extension of conventional quantum mechanics. Under our proposed framework, we further study in detail the Berry phase generation in a class of PT-symmetric two-level systems. It is found that a closed adiabatic path in PTQM is often associated with an open adiabatic path in a properly mapped problem in conventional quantum mechanics. In one interesting case we further interpret the Berry phase as the flux of a continuously tunable fictitious magnetic monopole, thus highlighting the difference between PTQM and conventional quantum mechanics despite the existence of a proper mapping between them.

http://arxiv.org/abs/1210.5344

Quantum Physics (quant-ph)

Jiangbin Gong, Qing-hai Wang

A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity-time- (PT-) symmetric matrices. To illustrate the main idea, we first study 2*2 complex Hermitian matrix ensembles with O(2) invariant constraints, yielding novel level-spacing statistics such as singular distributions, half-Gaussian distribution, distributions interpolating between GOE (Gaussian Orthogonal Ensemble) distribution and half Gaussian distributions, as well as gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2*2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian Unitary Ensemble) statistics or “truncated-GUE” statistics.

http://arxiv.org/abs/1204.6126

Quantum Physics (quant-ph)