Tag J. Schindler

PT-Symmetric Electronics

J. Schindler, Z. Lin, J. M. Lee, Hamidreza Ramezani, F. M. Ellis, Tsampikos Kottos

We show both theoretically and experimentally that a pair of inductively coupled active LRC circuits (dimer), one with amplification and another with an equivalent amount of attenuation, display all the features which characterize a wide class of non-Hermitian systems which commute with the joint parity-time PT operator: typical normal modes, temporal evolution, and scattering processes. Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric Hamiltonian, which provides important insight for understanding the behavior of the system. When the PT-dimer is coupled to transmission lines, the resulting scattering signal reveals novel features which reflect the PT-symmetry of the scattering target. Specifically we show that the device can show two different behaviors simultaneously, an amplifier or an absorber, depending on the direction and phase relation of the interrogating waves. Having an exact theory, and due to its relative experimental simplicity, PT-symmetric electronics offers new insights into the properties of PT-symmetric systems which are at the forefront of the research in mathematical physics and related fields.

http://arxiv.org/abs/1209.2347
Other Condensed Matter (cond-mat.other); Optics (physics.optics); Quantum Physics (quant-ph)

Bypassing the bandwidth theorem with PT symmetry

Hamidreza Ramezani, J. Schindler, F. M. Ellis, Uwe Guenther, Tsampikos Kottos

The beat time \({\tau}_{fpt}\) associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound \({\tau}_{fpt}\sim 1/{\delta}{\omega}\). We show, both experimentally and theoretically, that two coupled active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference \(\delta\omega\). Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.

http://arxiv.org/abs/1205.1847
Classical Physics (physics.class-ph)