Tag Hugh F. Jones

WKB Analysis of PT-Symmetric Sturm-Liouville problems. II

Carl M. Bender, Hugh F. Jones

In a previous paper it was shown that a one-turning-point WKB approximation gives an accurate picture of the spectrum of certain non-Hermitian PT-symmetric Hamiltonians on a finite interval with Dirichlet boundary conditions. Potentials to which this analysis applies include the linear potential \(V=igx\) and the sinusoidal potential \(V=ig\sin(\alpha x)\). However, the one-turning-point analysis fails to give the full structure of the spectrum for the cubic potential \(V=igx^3\), and in particular it fails to reproduce the critical points at which two real eigenvalues merge and become a complex-conjugate pair. The present paper extends the method to cases where the WKB path goes through a pair of turning points. The extended method gives an extremely accurate approximation to the spectrum of \(V=igx^3\), and more generally it works for potentials of the form \(V=igx^{2N+1}\). When applied to potentials with half-integral powers of \(x\), the method again works well for one sign of the coupling, namely that for which the turning points lie on the first sheet in the lower-half plane.

http://arxiv.org/abs/1203.5702
High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph); Quantum Physics (quant-ph)

Bound states of PT-symmetric separable potentials

Carl M. Bender, Hugh F. Jones

All of the PT-symmetric potentials that have been studied so far have been local. In this paper nonlocal PT-symmetric separable potentials of the form \(V(x,y)=i\epsilon[U(x)U(y)-U(-x)U(-y)]\), where \(U(x)\) is real, are examined. Two specific models are examined. In each case it is shown that there is a parametric region of the coupling strength $\epsilon$ for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of \(\epsilon\) that bound this region are calculated.

http://arxiv.org/abs/1107.2293
High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph); Quantum Physics (quant-ph)