Tag G. Della Valle

Optical lattices with exceptional points in the continuum

S. Longhi, G. Della Valle

The spectral, dynamical and topological properties of physical systems described by non-Hermitian (including PT-symmetric) Hamiltonians are deeply modified by the appearance of exceptional points and spectral singularities. Here we show that exceptional points in the continuum can arise in non-Hermitian (yet admitting and entirely real-valued energy spectrum) optical lattices with engineered defects. At an exceptional point, the lattice sustains a bound state with an energy embedded in the spectrum of scattered states, similar to the von-Neumann Wigner bound states in the continuum of Hermitian lattices. However, the dynamical and scattering properties of the bound state at an exceptional point are deeply different from those of ordinary von-Neumann Wigner bound states in an Hermitian system. In particular, the bound state in the continuum at an exceptional point is an unstable state that can secularly grow by an infinitesimal perturbation. Such properties are discussed in details for transport of discretized light in a PT-symmetric array of coupled optical waveguides, which could provide an experimentally accessible system to observe exceptional points in the continuum.

http://arxiv.org/abs/1402.3764

Quantum Physics (quant-ph); Optics (physics.optics)

Absence of Floquet scattering in oscillating non-Hermitian potential wells

S. Longhi, G. Della Valle

Scattering of a quantum particle from an oscillating barrier or well does not generally conserve the particle energy owing to energy exchange with the photon field, and an incoming particle-free state is scattered into a set of outgoing (transmitted and reflected) free states according to Floquet scattering theory. Here we introduce two families of oscillating non-Hermitian potential wells in which Floquet scattering is fully suppressed for any energy of the incident particle. The scattering-free oscillating potentials are synthesized by application of the Darboux transformation to the time-dependent Schr\”{o}dinger equation. For one of the two families of scattering-free potentials, the oscillating potential turns out to be fully invisible.

http://arxiv.org/abs/1306.0675
Quantum Physics (quant-ph)

Invisible defects in complex crystals

S. Longhi, G. Della Valle

We show that invisible localized defects, i.e. defects that can not be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wave functions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential.

http://arxiv.org/abs/1306.0667
Quantum Physics (quant-ph)