Tag David Krejcirik

On the metric operator for the imaginary cubic oscillator

Petr Siegl, David Krejcirik

We show that the eigenvectors of the PT -symmetric imaginary cubic oscillator are complete, but do not form a Riesz basis. This results in the existence of a bounded metric operator having intrinsic singularity reflected in the inevitable unboundedness of the inverse. Moreover, the existence of nontrivial pseudospectrum is observed. In other words, there is no quantum-mechanical Hamiltonian associated with it via bounded and boundedly invertible similarity transformations. These results open new directions in physical interpretation of PT -symmetric models with intrinsically singular metric, since their properties are essentially different with respect to self-adjoint Hamiltonians, for instance, due to spectral instabilities.

http://arxiv.org/abs/1208.1866
Quantum Physics (quant-ph); Mathematical Physics (math-ph)
Physical Review D 86, 121702 (2012)

The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions

Denis Borisov, David Krejcirik

The Laplacian in an unbounded tubular neighbourhood of a hyperplane with non-Hermitian complex-symmetric Robin-type boundary conditions is investigated in the limit when the width of the neighbourhood diminishes. We show that the Laplacian converges in a norm resolvent sense to a self-adjoint Schroedinger operator in the hyperplane whose potential is expressed solely in terms of the boundary coupling function. As a consequence, we are able to explain some peculiar spectral properties of the non-Hermitian Laplacian by known results for Schroedinger operators.

http://arxiv.org/abs/1102.5051
Spectral Theory (math.SP); Mathematical Physics (math-ph)