Tag B. Peng

PT-Symmetric Optomechanically-Induced Transparency

H. Jing, Z. Geng, S. K. Özdemir, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, F. Nori

Optomechanically-induced transparency (OMIT) and the associated slow-light propagation provide the basis for storing photons in nanofabricated phononic devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a reversed, non-amplifying transparency: inverted-OMIT. When the gain-to-loss ratio is steered, the system exhibits a transition from the PT-symmetric phase to the broken-PT-symmetric phase. We show that by tuning the pump power at fixed gain-to-loss ratio or the gain-to-loss ratio at fixed pump power, one can switch from slow to fast light and vice versa. Moreover, the presence of PT-phase transition results in the reversal of the pump and gain dependence of transmission rates. These features provide new tools for controlling light propagation using optomechanical devices.

Quantum Physics (quant-ph); Optics (physics.optics)

Loss-induced suppression and revival of lasing

B. Peng, S. K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang

Controlling and reversing the effects of loss are major challenges in optical systems. For lasers losses need to be overcome by a sufficient amount of gain to reach the lasing threshold. We show how to turn losses into gain by steering the parameters of a system to the vicinity of an exceptional point (EP), which occurs when the eigenvalues and the corresponding eigenstates of a system coalesce. In our system of coupled microresonators, EPs are manifested as the loss-induced suppression and revival of lasing. Below a critical value, adding loss annihilates an existing Raman laser. Beyond this critical threshold, lasing recovers despite the increasing loss, in stark contrast to what would be expected from conventional laser theory. Our results exemplify the counterintuitive features of EPs and present an innovative method for reversing the effect of loss.

Optics (physics.optics); Quantum Physics (quant-ph)