Bulk Vortex and Horseshoe Surface Modes in Parity-Time Symmetric Media

Huagang Li, Xing Zhu, Zhiwei Shi, Boris A. Malomed, Tianshu Lai, Chaohong Lee

We demonstrate that in-bulk vortex localized modes, and their surface half-vortex (“horseshoe”) counterparts (which were not reported before in truncated settings) self-trap in two-dimensional (2D) nonlinear optical systems with PT-symmetric photonic lattices (PLs). The respective stability regions are identified in the underlying parameter space. The in-bulk states are related to truncated nonlinear Bloch waves in gaps of the PL-induced spectrum. The basic vortex and horseshoe modes are built, severally, of four and three beams with appropriate phase shifts between them. Their stable complex counterparts, built of up to 12 beams, are reported too.

Optics (physics.optics); Pattern Formation and Solitons (nlin.PS)

Add Your Comments