Discrete spectrum of thin PT-symmetric waveguide

Denis Borisov

In a thin multidimensional layer we consider a second order differential PT-symmetric operator. The operator is of rather general form and its coefficients are arbitrary functions depending both on slow and fast variables. The PT-symmetry of the operator is ensured by the boundary conditions of Robin type with pure imaginary coefficient. In the work we determine the limiting operator, prove the uniform resolvent convergence of the perturbed operator to the limiting one, and derive the estimates for the rates of convergence. We establish the convergence of the spectrum of perturbed operator to that of the limiting one. For the perturbed eigenvalues converging to the limiting discrete ones we prove that they are real and construct their complete asymptotic expansions. We also obtain the complete asymptotic expansions for the associated eigenfunctions.

http://arxiv.org/abs/1403.4524

Spectral Theory (math.SP); Mathematical Physics (math-ph); Analysis of PDEs (math.AP)

Add Your Comments