Carlos A. Margalli, J. David Vergara

The quantization of higher order time derivative theories including interactions is unclear. In this paper in order to solve this problem, we propose to consider a complex version of the higher order derivative theory and map this theory to a real first order theory. To achieve this relationship, the higher order derivative formulation must be complex since there is not a real canonical transformation from this theory to a real first order theory with stable interactions. In this manner, we work with a non-Hermitian higher order time derivative theory. To quantize this complex theory, we introduce reality conditions that allow us to map the complex higher order theory to a real one, and we show that the resulting theory is regularizable and renormalizable for a class of interactions.

http://arxiv.org/abs/1309.2928

High Energy Physics – Theory (hep-th)