D. Dutta, O. Panella, P. Roy

We study generalized Dirac oscillators with complex interactions in \((1+1)\) dimensions. It is shown that for the choice of interactions considered here, the Dirac Hamiltonians are \(\eta\) pseudo Hermitian with respect to certain metric operators \(\eta\). Exact solutions of the generalized Dirac Oscillator for some choices of the interactions have also been obtained. It is also shown that generalized Dirac oscillators can be identified with Anti Jaynes Cummings type model and by spin flip it can also be identified with Jaynes Cummings type model.

http://arxiv.org/abs/1301.2035

Mathematical Physics (math-ph); High Energy Physics – Theory (hep-th); Quantum Physics (quant-ph)