Non-Hermitian Quantum Annealing in the Transverse Ising Model

Alexander I. Nesterov, Juan Carlos Beas Zepeda, Gennady P. Berman

We create a non-Hermitian quantum optimization algorithm to find the ground state of an Ising model with up to 1024 spins (qubits). Our approach leads to significant reduction of the annealing time. Analytic and numerical results demonstrate that the total annealing time is proportional to ln N, where N is the number of spins. This encouraging result is important for the rapid solution of NP-complete problems. Additional research is proposed for extending our dissipative algorithm to more complicated problems.

Quantum Physics (quant-ph); Mathematical Physics (math-ph); Computational Physics (physics.comp-ph)

Add Your Comments