Category Los Alamos National Laboratory

PT-Symmetric dimer in a generalized model of coupled nonlinear oscillators

J. Cuevas-Maraver, A. Khare, P.G. Kevrekidis, H. Xu, A. Saxena

In the present work, we explore the case of a general PT-symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrodinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations.

http://arxiv.org/abs/1409.7218
Pattern Formation and Solitons (nlin.PS); Chaotic Dynamics (nlin.CD); Exactly Solvable and Integrable Systems (nlin.SI)

Periodic and Hyperbolic Soliton Solutions of a Number of Nonlocal PT-Symmetric Nonlinear Equations

Avinash Khare, Avadh Saxena

For a number of nonlocal nonlinear equations such as nonlocal, nonlinear Schrodinger equation (NLSE), nonlocal Ablowitz-Ladik (AL), nonlocal, saturable discrete NLSE (DNLSE), coupled nonlocal NLSE, coupled nonlocal AL and coupled nonlocal, saturable DNLSE, we obtain periodic solutions in terms of Jacobi elliptic functions as well as the corresponding hyperbolic soliton solutions. Remarkably, in all the six cases, we find that unlike the corresponding local cases, all the nonlocal models simultaneously admit both the bright and the dark soliton solutions. Further, in all the six cases, not only \(\rm{Dn}(x,m)\) and \(\rm{Cn}(x,m)\) but even their linear superposition is shown to be an exact solution. Finally, we show that the coupled nonlocal NLSE not only admits solutions in terms of Lame polynomials of order 1, but it also admits solutions in terms of Lame polynomials of order 2, even though they are not the solutions of the uncoupled nonlocal problem. We also remark on the possible integrability in certain cases.

http://arxiv.org/abs/1405.5267
Pattern Formation and Solitons (nlin.PS)

PT-symmetry breaking with divergent potentials: lattice and continuum cases

Yogesh N. Joglekar, Derek D. Scott, Avadh Saxena

We investigate the parity- and time-reversal (PT)-symmetry breaking in lattice models in the presence of long-ranged, non-hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials \(V_a(x)\sim i|x|^a{\rm sign}(x)\) have a positive PT-breaking threshold for \(\alpha>−2\), and a zero threshold for α≤−2. When α<0 localized states with complex (conjugate) energies in the continuum energy-band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time-scale in the PT-symmetry broken region.

http://arxiv.org/abs/1403.4204
Quantum Physics (quant-ph); Optics (physics.optics)

PT-Symmetric Dimer of Coupled Nonlinear Oscillators

J. Cuevas, P.G. Kevrekidis, A. Saxena, A. Khare

We provide a systematic analysis of a prototypical nonlinear oscillator system respecting PT-symmetry i.e., one of them has gain and the other an equal and opposite amount of loss. Starting from the linear limit of the system, we extend considerations to the nonlinear case for both soft and hard cubic nonlinearities identifying symmetric and anti-symmetric breather solutions, as well as symmetry breaking variants thereof. We propose a reduction of the system to a Schr\”odinger type PT-symmetric dimer, whose detailed earlier understanding can explain many of the phenomena observed herein, including the PT phase transition. Nevertheless, there are also significant parametric as well as phenomenological potential differences between the two models and we discuss where these arise and where they are most pronounced. Finally, we also provide examples of the evolution dynamics of the different states in their regimes of instability.

http://arxiv.org/abs/1307.6047

Pattern Formation and Solitons (nlin.PS)

Non-Hermitian Quantum Annealing in the Antiferromagnetic Ising Chain

Alexander I. Nesterov, Gennady P. Berman, Juan C. Beas Zepeda, Alan R. Bishop

A non-Hermitian quantum optimization algorithm is created and used to find the ground state of an antiferromagnetic Ising chain. We demonstrate analytically and numerically (for up to N=1024 spins) that our approach leads to a significant reduction of the annealing time that is proportional to \(\ln N\), which is much less than the time (proportional to \(N^2\)) required for the quantum annealing based on the corresponding Hermitian algorithm. We propose to use this approach to achieve similar speed-up for NP-complete problems by using classical computers in combination with quantum algorithms.

http://arxiv.org/abs/1302.6555
Quantum Physics (quant-ph); Mathematical Physics (math-ph)

Non-Hermitian Quantum Annealing in the Transverse Ising Model

Alexander I. Nesterov, Juan Carlos Beas Zepeda, Gennady P. Berman

We create a non-Hermitian quantum optimization algorithm to find the ground state of an Ising model with up to 1024 spins (qubits). Our approach leads to significant reduction of the annealing time. Analytic and numerical results demonstrate that the total annealing time is proportional to ln N, where N is the number of spins. This encouraging result is important for the rapid solution of NP-complete problems. Additional research is proposed for extending our dissipative algorithm to more complicated problems.

http://arxiv.org/abs/1211.3178

Quantum Physics (quant-ph); Mathematical Physics (math-ph); Computational Physics (physics.comp-ph)

Quantum search using non-Hermitian adiabatic evolution

Alexander I. Nesterov, Gennady P. Berman

We propose a non-Hermitian quantum annealing algorithm which can be useful for solving complex optimization problems. We demonstrate our approach on Grover’s problem of finding a marked item inside of unsorted database. We show that the energy gap between the ground and excited states depends on the relaxation parameters, and is not exponentially small. This allows a significant reduction of the searching time. We discuss the relations between the probabilities of finding the ground state and the survival of a quantum computer in a dissipative environment.

http://arxiv.org/abs/1208.4642
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Computational Physics (physics.comp-ph)

Non-Hermitian approach for modeling of noise-assisted quantum electron transfer in photosynthetic complexes

Alexander I. Nesterov, Gennady P. Berman, Alan R. Bishop

We model the quantum electron transfer (ET) in the photosynthetic reaction center (RC), using a non-Hermitian Hamiltonian approach. Our model includes (i) two protein cofactors, donor and acceptor, with discrete energy levels and (ii) a third protein pigment (sink) which has a continuous energy spectrum. Interactions are introduced between the donor and acceptor, and between the acceptor and the sink, with noise acting between the donor and acceptor. The noise is considered classically (as an external random force), and it is described by an ensemble of two-level systems (random fluctuators). Each fluctuator has two independent parameters, an amplitude and a switching rate. We represent the noise by a set of fluctuators with fitting parameters (boundaries of switching rates), which allows us to build a desired spectral density of noise in a wide range of frequencies. We analyze the quantum dynamics and the efficiency of the ET as a function of (i) the energy gap between the donor and acceptor, (ii) the strength of the interaction with the continuum, and (iii) noise parameters. As an example, numerical results are presented for the ET through the active pathway in a quinone-type photosystem II RC.

http://arxiv.org/abs/1204.0805
Quantum Physics (quant-ph); Biological Physics (physics.bio-ph)