August 2014
Mon Tue Wed Thu Fri Sat Sun
« Jul   Sep »

Day August 12, 2014

Infinitely many inequivalent field theories from one Lagrangian

Carl M. Bender, Daniel W. Hook, Nick E. Mavromatos, Sarben Sarkar

Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field \(\phi\). In Euclidean space the Lagrangian of such a theory, \(L=\frac{1}{2}(\nabla\phi)^2−ig\phi \exp(ia\phi)\), is analyzed using the techniques of PT-symmetric quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer n. In one-dimensional space (quantum mechanics) the energy spectrum is calculated in the semiclassical limit and the \(m\)th energy level in the \(n\)th sector is given by \(E_{m,n}∼(m+1/2)^2a^2/(16n^2)\).
High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph); Quantum Physics (quant-ph)