October 2013
Mon Tue Wed Thu Fri Sat Sun
« Sep   Nov »

Day October 20, 2013

A non self-adjoint model on a two dimensional noncommutative space with unbound metric

Fabio Bagarello, Andreas Fring

We demonstrate that a non self-adjoint Hamiltonian of harmonic oscillator type defined on a two-dimensional noncommutative space can be diagonalized exactly by making use of pseudo-bosonic operators. The model admits an antilinear symmetry and is of the type studied in the context of PT-symmetric quantum mechanics. Its eigenvalues are computed to be real for the entire range of the coupling constants and the biorthogonal sets of eigenstates for the Hamiltonian and its adjoint are explicitly constructed. We show that despite the fact that these sets are complete and biorthogonal, they involve an unbounded metric operator and therefore do not constitute (Riesz) bases for the Hilbert space \(\Lc^2(\Bbb R^2)\), but instead only D-quasi bases. As recently proved by one of us (FB), this is sufficient to deduce several interesting consequences.


Quantum Physics (quant-ph); Mathematical Physics (math-ph)

Necessity of PT symmetry for soliton families in one-dimensional complex potentials

Jianke Yang

For the one-dimensional nonlinear Schroedinger equation with a complex potential, it is shown that if this potential is not parity-time (PT) symmetric, then no continuous families of solitons can bifurcate out from linear guided modes, even if the linear spectrum of this potential is all real. Both localized and periodic non-PT-symmetric potentials are considered, and the analytical conclusion is corroborated by explicit examples. Based on this result, it is argued that PT-symmetry of a one-dimensional complex potential is a necessary condition for the existence of soliton families.

Pattern Formation and Solitons (nlin.PS); Optics (physics.optics)