June 2012
Mon Tue Wed Thu Fri Sat Sun
« May   Jul »
 123
45678910
11121314151617
18192021222324
252627282930  

Day June 7, 2012

Invisibility and PT-symmetry

Ali Mostafazadeh

For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT) transformation. We determine the PT-symmetric an well as non-PT-symmetric invisible configurations of an easily realizable exactly solvable model that consists of a two-layer planar slab consisting of optically active material. Our analysis shows that although PT-symmetry is neither necessary nor sufficient for the invisibility of a scattering potential, it plays an important role in the characterization of the invisible configurations. A byproduct of our investigation is the discovery of certain configurations of our model that are effectively reflectionless in a spectral range as wide as several hundred nanometers.

http://arxiv.org/abs/1206.0116
Mathematical Physics (math-ph); Optics (physics.optics); Quantum Physics (quant-ph)

Astrophysical Evidence for the Non-Hermitian but \(PT\)-symmetric Hamiltonian of Conformal Gravity

Philip D. Mannheim

In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but $PT$ symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but \(PT\)-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With \(PT\) symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but \(PT\)-symmetric Hamiltonians to physics.

http://arxiv.org/abs/1205.5717
High Energy Physics – Theory (hep-th); Cosmology and Extragalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc); Quantum Physics (quant-ph)