February 2012
Mon Tue Wed Thu Fri Sat Sun
« Jan   Mar »

Day February 8, 2012

Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions

V. Achilleos, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González

We consider the nonlinear analogues of Parity-Time (\(\mathcal{PT}\)) symmetric linear systems exhibiting defocusing nonlinearities. We study the ground state and excited states (dark solitons and vortices) of the system and report the following remarkable features. For relatively weak values of the parameter \(\varepsilon\) controlling the strength of the \(\mathcal{PT}\)-symmetric potential, excited states undergo (analytically tractable) spontaneous symmetry breaking; as \(\varepsilon\) is further increased, the ground state and first excited state, as well as branches of higher multi-soliton (multi-vortex) states, collide in pairs and disappear in blue-sky bifurcations, in a way which is strongly reminiscent of the linear \(\mathcal{PT}\)-phase transition —thus termed the nonlinear \(\mathcal{PT}\)-phase transition. Past this critical point, initialization of, e.g., the former ground state leads to spontaneously emerging “soliton (vortex) sprinklers”.

Pattern Formation and Solitons (nlin.PS); Soft Condensed Matter (cond-mat.soft)