Breakdown of adiabatic transfer schemes in the presence of decay

Eva-Maria Graefe, Alexei A. Mailybaev, Nimrod Moiseyev

In atomic physics, adiabatic evolution is often used to achieve a robust and efficient population transfer. Many adiabatic schemes have also been implemented in optical waveguide structures. Recently there has been increasing interests in the influence of decay and absorption, and their engineering applications. Here it is shown that contrary to what is often assumed, even a small decay can significantly influence the dynamical behaviour of a system, above and beyond a mere change of the overall norm. In particular, a small decay can lead to a breakdown of adiabatic transfer schemes, even when both the spectrum and the eigenfunctions are only sightly modified. This is demonstrated for the decaying version of a STIRAP scheme that has recently been implemented in optical waveguide structures. It is found that the transfer property of the scheme breaks down at a sharp threshold, which can be estimated by simple analytical arguments.
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Optics (physics.optics)

Add Your Comments