Jianke Yang

Symmetry breaking of solitons in a class of one-dimensional parity-time (PT) symmetric complex potentials with cubic nonlinearity is reported. In generic PT symmetric potentials, such symmetry breaking is forbidden. However, in a special class of PT-symmetric potentials \(V(x)=g^2(x)+αg(x)+ig′(x)\), where \(g(x)\) is a real and even function and α a real constant, symmetry breaking of solitons can occur. That is, a branch of non-PT-symmetric solitons can bifurcate out from the base branch of PT-symmetric solitons when the base branch’s power reaches a certain threshold. At the bifurcation point, the base branch changes stability, and the bifurcated branch can be stable.

http://arxiv.org/abs/1408.0687

Optics (physics.optics); Pattern Formation and Solitons (nlin.PS)