Dark state lasers

Cale M. Gentry, Milos A. Popovic

We propose a new type of laser resonator based on imaginary “energy-level splitting” (imaginary coupling, or quality factor Q splitting) in a pair of coupled microcavities. A particularly advantageous arrangement involves two microring cavities with different free-spectral ranges (FSRs) in a configuration wherein they are coupled by “far-field” interference in a shared radiation channel. A novel Vernier-like effect for laser resonators is designed where only one longitudinal resonant mode has a lower loss than the small signal gain and can achieve lasing while all other modes are suppressed. This configuration enables ultra-widely tunable single-frequency lasers based on either homogeneously or inhomogeneously broadened gain media. The concept is an alternative to the common external cavity configurations for achieving tunable single-mode operation in a laser. The proposed laser concept builds on a high-Q “dark state” that is established by radiative interference coupling and bears a direct analogy to parity-time (PT) symmetric Hamiltonians in optical systems. Variants of this concept should be extendable to parametric-gain based oscillators, enabling use of ultrabroadband parametric gain for widely tunable single-frequency light sources.

Optics (physics.optics)

Add Your Comments