Magnetoelectric Effects in Local Light-Matter Interactions

Konstantin Y. Bliokh, Yuri S. Kivshar, Franco Nori

We study the generic interaction of a monochromatic electromagnetic field with bi-isotropic nanoparticles. Such an interaction is described by dipole-coupling terms associated with the breaking of dual, P- and T-symmetries, including the chirality and the nonreciprocal magnetoelectric effect. We calculate absorption rates, radiation forces, and radiation torques for the nanoparticles and introduce novel characteristics of the field quantifying the transfer of energy, momentum, and angular-momentum in these interactions. In particular, we put forward the concept of ‘magnetoelectric energy density’, quantifying the local PT-symmetry of the field. Akin to the ‘super-chiral’ light suggested recently for sensitive local probing of molecular chirality [Phys. Rev. Lett. 104, 163901 (2010); Science 332, 333 (2011)], here we describe a complex field for sensitive probing of the nonreciprocal magnetoelectric effect in nanoparticles or molecules.

http://arxiv.org/abs/1312.4325

Optics (physics.optics); Other Condensed Matter (cond-mat.other); Quantum Physics (quant-ph)

Add Your Comments