Complex Classical Mechanics of a QES Potential

Bhabani Prasad Mandal, Sushant S. Mahajan

We consider a Parity-time (PT) invariant non-Hermitian quasi-exactly solvable (QES) potential which exhibits PT phase transition. We numerically study this potential in a complex plane classically to demonstrate different quantum effects. The particle with real energy makes closed orbits around one of the periodic wells of the complex potential depending on the initial condition. However interestingly the particle can have open orbits even with real energy if it is initially placed in certain region between the two wells on the same side of the imaginary axis. On the other hand when the particle energy is complex the trajectory is open and the particle tunnels back and forth between two wells which are separated by a classically forbidden path. The tunneling time is calculated for different pair of wells and is shown to vary inversely with the imaginary component of energy. At the classical level unlike the analogous quantum situation we do not see any qualitative differences in the features of the particle dynamics for PT symmetry broken and unbroken phases.
Quantum Physics (quant-ph); High Energy Physics – Theory (hep-th)

Add Your Comments