Constructing Exactly Solvable Pseudo-hermitian Many-particle Quantum Systems by Isospectral Deformation

Pijush K. Ghosh

A class of non-Dirac-hermitian many-particle quantum systems admitting entirely real spectra and unitary time-evolution is presented. These quantum models are isospectral with Dirac-hermitian systems and are exactly solvable. The general method involves a realization of the basic canonical commutation relations defining the quantum system in terms of operators those are hermitian with respect to a pre-determined positive definite metric in the Hilbert space. Appropriate combinations of these operators result in a large number of pseudo-hermitian quantum systems admitting entirely real spectra and unitary time evolution. Examples of a pseudo-hermitian rational Calogero model and XXZ spin-chain are considered.

http://arxiv.org/abs/1012.0907
Quantum Physics (quant-ph); Strongly Correlated Electrons (cond-mat.str-el); High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph)

Add Your Comments