Philipp Strack, Vincenzo Vitelli

This paper proposes to study quantum fragile materials with small linear elasticity and a strong response to zero-point fluctuations. As a first model, we consider a non-unitary (but PT-symmetric) massive quantum chain with a Reggeon-type cubic nonlinearity. At the critical point, the chain supports neither the ordinary quantum phonons of a Luttinger liquid, nor the supersonic solitons that arise in classical fragile critical points in the absence of fluctuations. Quantum fluctuations, approximately captured within a one-loop renormalization group, give rise to mechanical excitations with a nonlinear dispersion relation and dissipative spectral behavior. Models of similar complexity should be realizable with trapped ions.

http://arxiv.org/abs/1302.4453

Quantum Gases (cond-mat.quant-gas); Statistical Mechanics (cond-mat.stat-mech); High Energy Physics – Theory (hep-th); Quantum Physics (quant-ph)