Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices

Henning Schomerus, Nicole Yunger Halpern

We describe the formation of highly degenerate, Landau-level-like amplified states in a strained photonic honeycomb lattice in which amplification breaks the sublattice symmetry. As a consequence of the parity anomaly, the zeroth Landau level is localized on a single sublattice and possesses an enhanced or reduced amplification rate. The spectral properties of the higher Landau levels are constrained by a generalized time-reversal symmetry. In the setting of two-dimensional photonic crystal lasers, the anomaly directly affects the mode selection and lasing threshold while in three-dimensional photonic lattices it can be probed via beam dynamics.

Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Optics (physics.optics)

Add Your Comments