December 2014
Mon Tue Wed Thu Fri Sat Sun
« Nov    
1234567
891011121314
15161718192021
22232425262728
293031  

Day December 2, 2014

Physics of Spectral Singularities

Ali Mostafazadeh

Spectral singularities are certain points of the continuous spectrum of generic complex scattering potentials. We review the recent developments leading to the discovery of their physical meaning, consequences, and generalizations. In particular, we give a simple definition of spectral singularities, provide a general introduction to spectral consequences of PT-symmetry (clarifying some of the controversies surrounding this subject), outline the main ideas and constructions used in the pseudo-Hermitian representation of quantum mechanics, and discuss how spectral singularities entered in the physics literature as obstructions to these constructions. We then review the transfer matrix formulation of scattering theory and the application of complex scattering potentials in optics. These allow us to elucidate the physical content of spectral singularities and describe their optical realizations. Finally, we survey some of the most important results obtained in the subject, drawing special attention to the remarkable fact that the condition of the existence of linear and nonlinear optical spectral singularities yield simple mathematical derivations of some of the basic results of laser physics, namely the laser threshold condition and the linear dependence of the laser output intensity on the gain coefficient.

http://arxiv.org/abs/1412.0454
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Optics (physics.optics)

Analytic Solution for PT-Symmetric Volume Gratings

Mykola Kulishov, H. F. Jones, Bernard Kress

We study the diffraction produced by a PT-symmetric volume Bragg grating that combines modulation of refractive index and gain/loss of the same periodicity with a quarter-period shift between them. Such a complex grating has a directional coupling between the different diffraction orders, which allows us to find an analytic solution for the first three orders of the full Maxwell equations without resorting to the paraxial approximation. This is important, because only with the full equations can the boundary conditions, allowing for reflections, be properly implemented. Using our solution we analyze the properties of such a grating in a wide variety of configurations.

http://arxiv.org/abs/1412.0506
Optics (physics.optics)