June 2014
Mon Tue Wed Thu Fri Sat Sun
« May   Jul »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Day June 7, 2014

Exact Solutions for Non-Hermitian Dirac-Pauli Equation in an intensive magnetic field

Vasily N. Rodionov

The modified Dirac-Pauli equations, which are introduced by means of \({\gamma_5}\)-mass factorization of the ordinary Klein-Gordon operator, are considered. We also take into account the interaction of fermions with the intensive homogenous magnetic field focusing attention to their (g-2) gyromagnetic factor. The basis of this approach is developing of methods for study of the structure of regions of unbroken \(\cal PT\) symmetry of Non-Hermitian Hamiltonians which be no studied earlier. For that, without the use of perturbation theory in the external field the exact energy spectra are deduced with regard to spin effects of fermions. We also investigate the unique possible of experimental observability the non-Hermitian restrictions in the spectrum of mass consistent with the conjecture Markov about Maximal Mass. This, in principal will may allow to find out the existence of an upper limit value in spectrum masses of elementary particles and confirm or deny the significance of the Planck mass.

http://arxiv.org/abs/1406.0383
High Energy Physics – Theory (hep-th); Quantum Physics (quant-ph)

Equivalence of the effective Hamiltonian approach and the Siegert boundary condition for resonant states

Naomichi Hatano

Two theoretical methods of finding resonant states in open quantum systems, namely the approach of the Siegert boundary condition and the Feshbach formalism, are reviewed and shown to be algebraically equivalent to each other for a simple model of the T-type quantum dot. It is stressed that the seemingly Hermitian Hamiltonian of an open quantum system is implicitly non-Hermitian outside the Hilbert space. The two theoretical approaches extract an explicitly non-Hermitian effective Hamiltonian in a contracted space out of the seemingly Hermitian (but implicitly non-Hermitian) full Hamiltonian in the infinite-dimensional state space of an open quantum system.

http://arxiv.org/abs/1405.7021
Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Mathematical Physics (math-ph); Nuclear Theory (nucl-th)

Cavity controlled spectral singularity

K. Nireekshan Reddy, S. Dutta Gupta

We study theoretically a PT-symmetric saturable balanced gain-loss system in a ring cavity configuration. The saturable gain and loss are modeled by two-level medium with or without population inversion. We show that the specifics of the spectral singularity can be fully controlled by the cavity and the atomic detuning parameters. The theory is based on the mean-field approximation as in standard theory of optical bistability. Further, in the linear regime we demonstrate the regularization of the singularity in detuned systems, while larger input power levels are shown to be adequate to limit the infinite growth in absence of detuning

http://arxiv.org/abs/1405.6812
Optics (physics.optics)