Jiteng Sheng, Mohammad-Ali Miri, Demetrios N. Christodoulides, Min Xiao

We demonstrate that a coherently-prepared four-level atomic medium can provide a versatile platform for realizing parity-time (PT) symmetric optical potentials. Different types of PT-symmetric potentials are proposed by appropriately tuning the exciting optical fields and the pertinent atomic parameters. Such reconfigurable and controllable systems can open up new avenues in observing PT-related phenomena with appreciable gain/loss contrast in coherent atomic media.

http://arxiv.org/abs/1305.4908

Optics (physics.optics)

Miloslav Znojil

The practical use of non-Hermitian (i.e., typically, PT-symmetric) phenomenological quantum Hamiltonians is discussed as requiring an explicit reconstruction of the ad hoc Hilbert-space metrics which would render the time-evolution unitary. Just the N-dimensional matrix toy models Hamiltonians are considered, therefore. For them, the matrix elements of alternative metrics are constructed via solution of a coupled set of polynomial equations, using the computer-assisted symbolic manipulations for the purpose. The feasibility and some consequences of such a model-construction strategy are illustrated via a discrete square well model endowed with multi-parametric close-to-the-boundary real bidiagonal-matrix interaction. The degenerate exceptional points marking the phase transitions are then studied numerically. A way towards classification of their unfoldings in topologically non-equivalent dynamical scenarios is outlined.

http://arxiv.org/abs/1305.4822

Quantum Physics (quant-ph)