X. Z. Zhang, Z. Song

We systematically study the non-Hermitian version of the one-dimensional anisotropic XY model, which in its original form, is a unique exactly solvable quantum spin model for understanding the quantum phase transition. The distinguishing features of this model are that it has full real spectrum if all the eigenvectors are intrinsic rotation-time reversal (RT) symmetric rather than parity-time reversal (PT) symmetric, and that its Hermitian counterpart is shown approximately to be an experimentally accessible system, an isotropic XY spin chain with nearest neighbor coupling. Based on the exact solution, exceptional points which separated the unbroken and broken symmetry regions are obtained and lie on a hyperbola in the thermodynamic limit. It provides a nice paradigm to elucidate the complex quantum mechanics theory for a quantum spin system.

http://arxiv.org/abs/1210.5613

Quantum Physics (quant-ph)