September 2012
Mon Tue Wed Thu Fri Sat Sun
« Aug   Oct »

Day September 6, 2012

Bragg solitons in nonlinear PT-symmetric periodic potentials

Mohammad-Ali Miri, Alejandro B. Aceves, Tsampikos Kottos, Vassilios Kovanis, Demetrios N. Christodoulides

It is shown that slow Bragg soliton solutions are possible in nonlinear complex parity-time (PT) symmetric periodic structures. Analysis indicates that the PT-symmetric component of the periodic optical refractive index can modify the grating band structure and hence the effective coupling between the forward and backward waves. Starting from a classical modified massive Thirring model, solitary wave solutions are obtained in closed form. The basic properties of these slow solitary waves and their dependence on their respective PT-symmetric gain/loss profile are then explored via numerical simulations.
Optics (physics.optics); Mathematical Physics (math-ph); Exactly Solvable and Integrable Systems (nlin.SI); Quantum Physics (quant-ph)

Non-hermitian model for resonant cavities coupled by a chiral mirror

Roberto Baginski B. Santos

Inspired by a recently observed asymmetry in the transmission of circularly polarized light through a metamaterial, we present a non-hermitian PT-symmetric quantum model to describe the interaction of the light fields in two resonant cavities coupled via a 2D-chiral mirror. We compute the time evolution of the light fields in this model, find two sets of operators compatible with the hamiltonian in a delocalized representation, discover the energies of the system and show that the transmission probability predicted by the model is indeed asymmetric.
Quantum Physics (quant-ph)