Alessandro Sergi, Konstantin G. Zloshchastiev

We consider a non-Hermitian Hamiltonian in order to effectively describe a two-level system coupled to a dissipative environment. The total Hamiltonian of the model is obtained by adding a general anti-Hermitian part, depending on four parameters, to the Hermitian Hamiltonian of a tunneling two-level system. The time evolution is formulated and derived in terms of the density matrix of the model, different types of decays are revealed and analyzed. In particular, the population difference and coherence are defined and calculated analytically. We have been able to mimic various physical situations with different properties, such as dephasing and vanishing population difference.

http://arxiv.org/abs/1207.4877

Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph)