Hamidreza Ramezani, J. Schindler, F. M. Ellis, Uwe Guenther, Tsampikos Kottos

The beat time \({\tau}_{fpt}\) associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound \({\tau}_{fpt}\sim 1/{\delta}{\omega}\). We show, both experimentally and theoretically, that two coupled active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference \(\delta\omega\). Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.

http://arxiv.org/abs/1205.1847

Classical Physics (physics.class-ph)