May 2012
Mon Tue Wed Thu Fri Sat Sun
« Apr   Jun »
 123456
78910111213
14151617181920
21222324252627
28293031  

Day May 10, 2012

Bypassing the bandwidth theorem with PT symmetry

Hamidreza Ramezani, J. Schindler, F. M. Ellis, Uwe Guenther, Tsampikos Kottos

The beat time \({\tau}_{fpt}\) associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound \({\tau}_{fpt}\sim 1/{\delta}{\omega}\). We show, both experimentally and theoretically, that two coupled active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference \(\delta\omega\). Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.

http://arxiv.org/abs/1205.1847
Classical Physics (physics.class-ph)

Experimental observation of the dual behavior of PT-symmetric scattering

Zin Lin, Joseph Schindler, Fred M. Ellis, Tsampikos Kottos

We investigate experimentally parity-time \({\cal PT}\) symmetric scattering using \(LRC\) circuits in an inductively coupled \({\cal PT}\)- symmetric pair connected to transmission line leads. In the single-lead case, the \({\cal PT}\)-symmetric circuit acts as a simple dual device – an amplifier or an absorber depending on the orientation of the lead. When a second lead is attached, the system exhibits unidirectional transparency for some characteristic frequencies. This non-reciprocal behavior is a consequence of generalized (non-unitary) conservation relations satisfied by the scattering matrix.

http://arxiv.org/abs/1205.2176
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)