May 2012
Mon Tue Wed Thu Fri Sat Sun
« Apr   Jun »

Day May 10, 2012

Bypassing the bandwidth theorem with PT symmetry

Hamidreza Ramezani, J. Schindler, F. M. Ellis, Uwe Guenther, Tsampikos Kottos

The beat time \({\tau}_{fpt}\) associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound \({\tau}_{fpt}\sim 1/{\delta}{\omega}\). We show, both experimentally and theoretically, that two coupled active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference \(\delta\omega\). Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.
Classical Physics (physics.class-ph)

Experimental observation of the dual behavior of PT-symmetric scattering

Zin Lin, Joseph Schindler, Fred M. Ellis, Tsampikos Kottos

We investigate experimentally parity-time \({\cal PT}\) symmetric scattering using \(LRC\) circuits in an inductively coupled \({\cal PT}\)- symmetric pair connected to transmission line leads. In the single-lead case, the \({\cal PT}\)-symmetric circuit acts as a simple dual device – an amplifier or an absorber depending on the orientation of the lead. When a second lead is attached, the system exhibits unidirectional transparency for some characteristic frequencies. This non-reciprocal behavior is a consequence of generalized (non-unitary) conservation relations satisfied by the scattering matrix.
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)