April 2012
Mon Tue Wed Thu Fri Sat Sun
« Mar   May »

Day April 11, 2012

PT-symmetric deformations of integrable models

Andreas Fring

We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and non-linear integrable field equations of Korteweg-de-Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models we provide three alternative deformations: A complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real valued field equations of non linear integrable systems and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of KdV-type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.

High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph); Quantum Physics (quant-ph)