January 2012
Mon Tue Wed Thu Fri Sat Sun
« Dec   Feb »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Day January 13, 2012

The spectrum of the cubic oscillator

Vincenzo Grecchi, André Martinez

We prove the simplicity and analyticity of the eigenvalues of the cubic oscillator Hamiltonian,\(H(\beta)=-d^2/dx^2+x^2+i\sqrt{\beta}x^3\),for \(\beta\) in the cut plane \(\C_c:=\C\backslash (-\infty, 0)\). Moreover, we prove that the spectrum consists of the perturbative eigenvalues \(\{E_n(\beta)\}_{n\geq 0}\) labeled by the constant number $n$ of nodes of the corresponding eigenfunctions. In addition, for all \(\beta\in\C_c\), \(E_n(\beta)\) can be computed as the Stieltjes-Pad\’e sum of its perturbation series at \(\beta=0\). This also gives an alternative proof of the fact that the spectrum of \(H(\beta)\) is real when \(\beta\) is a positive number. This way, the main results on the repulsive PT-symmetric and on the attractive quartic oscillators are extended to the cubic case.

http://arxiv.org/abs/1201.2797
Mathematical Physics (math-ph); Spectral Theory (math.SP)