Category Shaanxi Normal University

Time evolution and adiabatic approximation in PT-symmetric quantum mechanics

Zhihua Guo, Huaixin Cao

In this paper, we discuss time evolution and adiabatic approximation in PT-symmetric quantum mechanics. we give the time evolving equation for a class of PT-symmetric Hamiltonians and some conditions of the adiabatic approximation for the class of PT-symmetric Hamiltonians.

http://arxiv.org/abs/1212.4615
Mathematical Physics (math-ph); Quantum Physics (quant-ph)

CPT-Frames for PT-symmetric Hamiltonians

Huai-Xin Cao, Zhi-Hua Guo, Zheng-Li Chen

PT-symmetric quantum mechanics is an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose and complex conjugate) is replaced by the physically transparent condition of space-time reflection symmetry (PT-symmetry). A Hamiltonian H is said to be PT-symmetric if it commutes with the operator PT. The key point of PT-symmetric quantum theory is to build a new positive definite inner product on the given Hilbert space so that the given Hamiltonian is Hermitian with respect to the new inner product.  The aim of this note is to give further mathematical discussions on this theory. Especially, concepts of PT-frames, CPT-frames on a Hilbert space and for a Hamiltonian are proposed, their existence and constructions are discussed.

http://arxiv.org/abs/1212.3944
Mathematical Physics (math-ph)