Category The University of Texas at Austin

Non-divergent representation of non-Hermitian operator near the exceptional point with application to a quantum Lorentz gas

Kazunari Hashimoto, Kazuki Kanki, Hisao Hayakawa, Tomio Petrosky

We propose a regular representation for a non-Hermitian operator even if the parameter space contains exceptional points (EPs), at which the operator cannot be diagonalized and the usual spectral representation ceases to exist. Our representation has a generalized Jordan block form and is written in terms of extended pseudo-eigenstates. Our method is free from the difficulty of the singularity of the spectral representation at EPs, at which multiple eigenvalues and eigenvectors coalesce and the eigenvectors cannot be normalized. Our representation improves the accuracy of numerical calculations of physical quantities near EPs. We also find that our method is applicable to various problems related to EPs in the parameter space of non-Hermitian operators. We demonstrate the usefulness of our representation by investigating Boltzmann’s collision operator in a one-dimensional quantum Lorentz gas in the weak coupling approximation.

http://arxiv.org/abs/1409.7453
Statistical Mechanics (cond-mat.stat-mech)

PT Metamaterials via Complex-Coordinate Transformation Optics

Giuseppe Castaldi, Silvio Savoia, Vincenzo Galdi, Andrea Alu’, Nader Engheta

We extend the transformation-optics paradigm to a complex spatial coordinate domain, in order to deal with electromagnetic metamaterials characterized by balanced loss and gain, giving special emphasis to parity-time (PT) symmetry metamaterials. We apply this general theory to complex-source-point radiation and unidirectional invisibility, illustrating the capability and potentials of our approach in terms of systematic design, analytical modeling and physical insights into complex-coordinate wave-objects and resonant states.

http://arxiv.org/abs/1210.7629

Optics (physics.optics)