Category Morehouse College

PT-symmetry Management in Oligomer Systems

R.L. Horne, J. Cuevas, P.G. Kevrekidis, N. Whitaker, F.Kh. Abdullaev, D.J. Frantzeskakis

We study the effects of management of the PT-symmetric part of the potential within the setting of Schrodinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analyzed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two.

http://arxiv.org/abs/1308.3738
Pattern Formation and Solitons (nlin.PS)

Linear and Nonlinear PT-symmetric Oligomers: A Dynamical Systems Analysis

M. Duanmu, K. Li, R. L. Horne, P. G. Kevrekidis, N. Whitaker

In the present work we focus on the cases of two-site (dimer) and three-site (trimer) configurations, i.e. oligomers, respecting the parity-time (PT) symmetry, i.e., with a spatially odd gain-loss profile. We examine different types of solutions of such configurations with linear and nonlinear gain/loss profiles. Solutions beyond the linear PT-symmetry critical point as well as solutions with asymmetric linearization eigenvalues are found in both the nonlinear dimer and trimer. The latter feature is absent in linear PT-symmetric trimers, while both of them are absent in linear PT symmetric dimers. Furthermore, nonlinear gain/loss terms enable the existence of both symmetric and asymmetric solution profiles (and of bifurcations between them), while only symmetric solutions are present in the linear PT-symmetric dimers and trimers. The linear stability analysis around the obtained solutions is discussed and their dynamical evolution is explored by means of direct numerical simulations. Finally, a brief discussion is also given of recent progress in the context of PT-symmetric quadrimers.

http://arxiv.org/abs/1210.3871
Quantum Physics (quant-ph)