Author dwh

Modulation instability in nonlinear complex parity-time (PT) symmetric periodic structures

Amarendra K. Sarma

We carry out a modulation instability (MI) analysis in nonlinear complex parity-time (PT) symmetric periodic structures. All the three regimes defined by the PT-symmetry breaking point or threshold, namely, below threshold, at threshold and above threshold are discussed. It is found that MI exists even beyond the PT-symmetry threshold indicating the possible existence of solitons or solitary waves, in conformity with some recent reports. We find that MI does not exist at the PT-symmetry breaking point in the case of normal dispersion below a certain nonlinear threshold. However, in the case of anomalous dispersion regime, MI does exist even at the PT-symmetry breaking point.

http://arxiv.org/abs/1405.2706
Optics (physics.optics)

Low-frequency anomalies in dynamic localization

Stefano Longhi

Quantum mechanical spreading of a particle hopping on tight binding lattices can be suppressed by the application of an external ac force, leading to periodic wave packet reconstruction. Such a phenomenon, referred to as dynamic localization (DL), occurs for certain magic values of the ratio \(\Gamma=F_0/\omega\) between the amplitude F0 and frequency ω of the ac force. It is generally believed that in the low-frequency limit \((\omega\to0)\) DL can be achieved for an infinitesimally small value of the force F0, i.e. at finite values of \(\Gamma\). Such a normal behavior is found in homogeneous lattices as well as in inhomogeneous lattices of Glauber-Fock type. Here we introduce a tight-binding lattice model with inhomogeneous hopping rates, referred to as pseudo Glauber-Fock lattice, which shows DL but fails to reproduce the normal low-frequency behavior of homogeneous and Glauber-Fock lattices. In pseudo Glauber-Fock lattices, DL can be exactly realized, however at the DL condition the force amplitude \(F_0\) remains finite as \(\omega\to0\). Such an anomalous behavior is explained in terms of a PT symmetry breaking transition of an associated two-level non-Hermitian Hamiltonian that effectively describes the dynamics of the Hermitian lattice model.

http://arxiv.org/abs/1405.2549

Quantum Physics (quant-ph); Strongly Correlated Electrons (cond-mat.str-el)

PT-symmetric microring lasers: Self-adapting broadband mode-selective resonators

Hossein Hodaei, Mohammad-Ali Miri, Matthias Heinrich, Demetrios N. Christodoulides, Mercedeh Khajavikhan

We demonstrate experimentally that stable single longitudinal mode operation can be readily achieved in PT-symmetric arrangements of coupled microring resonators. Whereas any active resonator is in principle capable of displaying single-wavelength operation, selective breaking of PT-symmetry can be utilized to systematically enhance the maximum achievable gain of this mode, even if a large number of competing longitudinal or transverse resonator modes fall within the amplification bandwidth of the inhomogeneously broadened active medium. This concept is robust with respect to fabrication tolerances, and its mode selectivity is established without the need for additional components or specifically designed filters. Our results may pave the way for a new generation of versatile cavities lasing at a desired longitudinal resonance. Along these lines, traditionally highly multi-moded microring resonator configurations can be fashioned to suppress all but one longitudinal mode.

http://arxiv.org/abs/1405.2103

Optics (physics.optics)

PT-symmetric coupler with a coupling defect: soliton interaction with exceptional point

Yuli V. Bludov, Chao Hang, Guoxiang Huang, Vladimir V. Konotop

We study interaction of a soliton in a parity-time (PT) symmetric coupler which has local perturbation of the coupling constant. Such a defect does not change the PT-symmetry of the system, but locally can achieve the exceptional point. We found that the symmetric solitons after interaction with the defect either transform into breathers or blow up. The dynamics of anti-symmetric solitons is more complex, showing domains of successive broadening of the beam and of the beam splitting in two outwards propagating solitons, in addition to the single breather generation and blow up. All the effects are preserved when the coupling strength in the center of the defect deviates from the exceptional point. If the coupling is strong enough the only observable outcome of the soliton-defect interaction is the generation of the breather.

http://arxiv.org/abs/1405.1829
Optics (physics.optics)

Analytical stable Gaussian soliton supported by a parity-time-symmetric potential with power-law nonlinearity

Bikashkali Midya

We address the existence and stability of spatial localized modes supported by a parity-time-symmetric complex potential in the presence of power-law nonlinearity. The analytical expressions of the localized modes, which are Gaussian in nature, are obtained in both (1+1) and (2+1) dimensions. A linear stability analysis corroborated by the direct numerical simulations reveals that these analytical localized modes can propagate stably for a wide range of the potential parameters and for various order nonlinearities. Some dynamical characteristics of these solutions, such as the power and the transverse power-flow density, are also examined.

http://arxiv.org/abs/1404.7322
Quantum Physics (quant-ph); Pattern Formation and Solitons (nlin.PS); Exactly Solvable and Integrable Systems (nlin.SI)

Integrable Generalized KdV, MKdV, and Nonlocal PT-Symmetric NLS Equations with Spatiotemporally Varying Coefficients

Matthew Russo, S. Roy Choudhury

We present a technique based on extended Lax Pairs to derive variable-coefficient generalizations of various Lax-integrable NLPDE hierarchies. As illustrative examples, we consider generalizations of KdV equations, three variants of generalized MKdV equations, and a recently-considered nonlocal PT-symmetric NLS equation. It is demonstrated that the technique yields Lax- or S-integrable NLPDEs with both time- AND space-dependent coefficients which are thus more general than almost all cases considered earlier via other methods such as the Painleve Test, Bell Polynomials, and various similarity methods. Employing the Painleve singular manifold method, some solutions are also presented for the generalized variable-coefficient integrable KdV and MKdV equations derived here. Current and future work is centered on generalizing other integrable hierarchies of NLPDEs similarly, and deriving various integrability properties such as solutions, Backlund Transformations, and hierarchies of conservation laws for these new integrable systems with variable coefficients.

http://arxiv.org/abs/1404.4602

Mathematical Physics (math-ph)

Exceptional points and Bloch oscillations in non-Hermitian lattices with unidirectional hopping

Stefano Longhi

The spectral and transport properties of a non-Hermitian tight-binding lattice with unidirectional hopping are theoretically investigated in three different geometrical settings. It is shown that, while for the infinitely-extended (open) and for the ring lattice geometries the spectrum is complex, lattice truncation makes the spectrum real. However, an exceptional point of order equal to the number of lattice sites emerges. When a homogeneous dc force is applied to the lattice, in all cases an equally-spaced real Wannier-Stark ladder spectrum is obtained, corresponding to periodic oscillatory dynamics in real space. Possible physical realizations of non-Hermitian lattices with unidirectional hopping are briefly discussed.

http://arxiv.org/abs/1404.3662
Quantum Physics (quant-ph)

Reversing the Pump-Dependence of a Laser at an Exceptional Point

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, S. Rotter

When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called “Exceptional Point” occurs which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such “non-Hermitian degeneracies”, since they feature resonant modes and a gain material as their basic constituents. Here we show that Exceptional Points can be conveniently induced in a photonic molecule laser by a suitable variation of the applied pump. Using a pair of coupled micro-disk quantum cascade lasers, we demonstrate that in the vicinity of these Exceptional Points the laser shows a characteristic reversal of its pump-dependence, including a strongly decreasing intensity of the emitted laser light for increasing pump power. This result establishes photonic molecule lasers as promising tools for exploring many further fascinating aspects of Exceptional Points, like a strong line-width enhancement and the coherent perfect absorption of light in their vicinity as well as non-trivial mode-switching and the accumulation of a geometric phase when encircling an Exceptional Point parametrically.

http://arxiv.org/abs/1404.1837
Optics (physics.optics); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Chaotic Dynamics (nlin.CD)

Coherent perfect absorption with and without lasing in complex potentials

Zafar Ahmed

We study the coherent scattering from complex potentials to find that the coherent perfect absorption (CPA) without lasing is not possible in the PT-symmetric domain as the s-matrix is such that \(|\det S(k)|=1\). We confirm that in the domain of broken PT-symmetry\(|\det S(k)|\) can become indeterminate 0/0 at the spectral singularity (SS), k=k∗, of the potential signifying CPA with lasing at threshold gain. We also find that in the domain of unbroken symmetry (when the potential has real discrete spectrum) neither SS nor CPA can occur. In this, regard, we find that exactly solvable Scarf II potential is the unique model that can exhibit these novel phenomena and their subtleties analytically and explicitly. However, we show that the other numerically solved models also behave similarly.

http://arxiv.org/abs/1404.1679

Quantum Physics (quant-ph)

Spectral Singularities and CPA-Laser Action in a Weakly Nonlinear PT-Symmetric Bilayer Slab

Ali Mostafazadeh

We study optical spectral singularities of a weakly nonlinear PT-symmetric bilinear planar slab of optically active material. In particular, we derive the lasing threshold condition and calculate the laser output intensity. These reveal the following unexpected features of the system: 1. For the case that the real part of the refractive index η of the layers are equal to unity, the presence of the lossy layer decreases the threshold gain; 2. For the more commonly encountered situations when η−1 is much larger than the magnitude of the imaginary part of the refractive index, the threshold gain coefficient is a function of η that has a local minimum. The latter is in sharp contrast to the threshold gain coefficient of a homogeneous slab of gain material which is a decreasing function of η. We use these results to comment on the effect of nonlinearity on the prospects of using this system as a CPA-laser.

http://arxiv.org/abs/1404.1737
Quantum Physics (quant-ph); Mathematical Physics (math-ph); Optics (physics.optics)