Dennis Dast, Daniel Haag, Holger Cartarius, Günter Wunner
We present a quantum master equation describing a Bose-Einstein condensate with particle loss on one lattice site and particle gain on the other lattice site whose mean-field limit is a non-Hermitian PT-symmetric Gross-Pitaevskii equation. It is shown that the characteristic properties of PT-symmetric systems, such as the existence of stationary states and the phase shift of pulses between two lattice sites, are also found in the many-particle system. Visualizing the dynamics on a Bloch sphere allows us to compare the complete dynamics of the master equation with that of the Gross-Pitaevskii equation. We find that even for a relatively small number of particles the dynamics are in excellent agreement and the master equation with balanced gain and loss is indeed an appropriate many-particle description of a PT-symmetric Bose-Einstein condensate.
http://arxiv.org/abs/1409.6189
Quantum Physics (quant-ph); Quantum Gases (cond-mat.quant-gas)
Henning Schomerus, Jan Wiersig
Coupled-resonator optical waveguides (CROWs) are known to have interesting and useful dispersion properties. Here, we study the transport in these waveguides in the general case where each resonator is open and asymmetric, i.e., is leaky and possesses no mirror-reflection symmetry. Each individual resonator then exhibits asymmetric backscattering between clockwise and counterclockwise propagating waves, which in combination with the losses induces non-orthogonal eigenmodes. In a chain of such resonators, the coupling between the resonators induces an additional source of non-hermiticity, and a complex band structure arises. We show that in this situation the group velocity of wave packets differs from the velocity associated with the probability density flux, with the difference arising from a non-hermitian correction to the Hellmann-Feynman theorem. Exploring these features numerically in a realistic scenario, we find that the complex band structure comprises almost-real branches and complex branches, which are joined by exceptional points, i.e., nonhermitian degeneracies at which not only the frequencies and decay rates coalesce but also the eigenmodes themselves. The non-hermitian corrections to the group velocity are largest in the regions around the exceptional points.
http://arxiv.org/abs/1409.5037
Optics (physics.optics); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Fabian Single, Holger Cartarius, Günter Wunner, Jörg Main
We show how non-Hermitian potentials used to describe probability gain and loss in effective theories of open quantum systems can be achieved by a coupling of the system to an environment. We do this by coupling a Bose-Einstein condensate (BEC) trapped in an attractive double-delta potential to a condensate fraction outside the double well. We investigate which requirements have to be imposed on possible environments with a linear coupling to the system. This information is used to determine an environment required for stationary states of the BEC. To investigate the stability of the system we use fully numerical simulations of the dynamics. It turns out that the approach is viable and possible setups for the realization of a PT-symmetric potential for a BEC are accessible. Vulnerabilities of the whole system to small perturbations can be adhered to the singular character of the simplified delta-shaped potential used in our model.
http://arxiv.org/abs/1409.7490
Quantum Physics (quant-ph); Quantum Gases (cond-mat.quant-gas)
Carl M. Bender, Mariagiovanna Gianfreda
In 1980 Englert examined the classic problem of the electromagnetic self-force on an oscillating charged particle. His approach, which was based on an earlier idea of Bateman, was to introduce a charge-conjugate particle and to show that the two-particle system is Hamiltonian. Unfortunately, Englert’s model did not solve the problem of runaway modes, and the corresponding quantum theory had ghost states. It is shown here that Englert’s Hamiltonian is PT symmetric, and that the problems with his model arise because the PT symmetry is broken at both the classical and quantum level. However, by allowing the charged particles to interact and by adjusting the coupling parameters to put the model into an unbroken PT-symmetric region, one eliminates the classical runaway modes and obtains a corresponding quantum system that is ghost free.
http://arxiv.org/abs/1409.3828
High Energy Physics – Theory (hep-th); Mathematical Physics (math-ph); Quantum Physics (quant-ph)
Miloslav Znojil
A non-Hermitian N−level quantum model with two free real parameters is proposed in which the bound-state energies are given as roots of an elementary trigonometric expression and in which they are, in a physical domain of parameters, all real. The wave function components are expressed as closed-form superpositions of two Chebyshev polynomials. In any eligible physical Hilbert space of finite dimension \(N<\infty\) our model is constructed as unitary with respect to an underlying Hilbert-space metric \(\Theta\neq I\). The simplest version of the latter metric is finally constructed, at any dimension N=2,3,…, in closed form. This version of the model may be perceived as an exactly solvable N−site lattice analogue of the \(N=\infty\) square well with complex Robin-type boundary conditions. At any \(N<\infty\) our closed-form metric becomes trivial (i.e., equal to the most common Dirac’s metric \(\Theta(Dirac)=I\)) at the special, Hermitian-Hamiltonian-limit parameters.
http://arxiv.org/abs/1409.3788
Mathematical Physics (math-ph); Quantum Physics (quant-ph)
C. Mejía-Cortés, M. I. Molina
We examine a one-dimensional PT-symmetric binary lattice in the presence of diagonal disorder. We focus on the wave transport phenomena of localized and extended input beams for this disordered system. In the pure PT-symmetric case, we derive an exact expression for the evolution of light localization in terms of the typical parameters of the system. In this case localization is enhanced as the gain and loss parameter in increased. In the presence of disorder, we observe that the presence of gain and loss inhibits (favors) the transport for localized (extended) excitations.
http://arxiv.org/abs/1409.3412
Optics (physics.optics)
Jean-Pierre Antoine, Camillo Trapani
A quasi-Hermitian operator is an operator that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Whereas those metric operators are in general assumed to be bounded, we analyze the structure generated by unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP-space). We introduce several generalizations of the notion of similarity between operators, in particular, the notion of quasi-similarity, and we explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP-space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, motivated by the recent developments of pseudo-Hermitian quantum mechanics, we reformulate the notion of pseudo-Hermitian operators in the preceding formalism.
http://arxiv.org/abs/1409.3497
Mathematical Physics (math-ph)
Paolo Amore, Francisco M. Fernández, Javier Garcia
We analyse some PT-symmetric oscillators with \(T_d\) symmetry that depend on a potential parameter \(g\). We calculate the eigenvalues and eigenfunctions for each irreducible representation and for a range of values of \(g\). Pairs of eigenvalues coalesce at exceptional points \(g_c\); their magnitude roughly decreasing with the magnitude of the eigenvalues. It is difficult to estimate whether there is a phase transition at a nonzero value of g as conjectured in earlier papers. Group theory and perturbation theory enable one to predict whether a given space-time symmetry leads to real eigenvalues for sufficiently small nonzero values of \(g\).
http://arxiv.org/abs/1409.2672
Quantum Physics (quant-ph)
V. V. Varlamov
Space-time and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Quotient representations of the Lorentz group and their possible relations with P- and CP-violations are considered. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincar\’{e} group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin allows one to take a new look at the problem of mass spectrum of elementary particles.
http://arxiv.org/abs/1409.1400
Mathematical Physics (math-ph); High Energy Physics – Theory (hep-th)
Hichem Eleuch, Ingrid Rotter
The natural environment of a localized quantum system is the continuum of scattering wavefunctions into which the system is embedded. It can be changed by external fields, however never be deleted. The control of the system’s properties by varying a certain parameter provides us information on the system. It is, in many cases, counterintuitive and points to the same phenomena in different systems in spite of the specific differences between them. In our paper, we use a schematic model in order to simulate the main features of small open quantum systems. At low level density, the system is described well by standard Hermitian quantum physics while fundamental differences appear at high level density due to the non-Hermiticity of the Hamiltonian which cannot be neglected under this condition. The influence of exceptional points, the phase rigidity of the wavefunctions and the nonlinearities in the equations are discussed by means of different numerical and (when possible) analytical results. The transition from a closed system at low level density to an open one at high level density occurs smoothly.
http://arxiv.org/abs/1409.1149
Quantum Physics (quant-ph)