A. V. Yulin, V. V. Konotop

Stable discrete compactons in arrays of inter-connected three-line waveguide arrays are found in linear and nonlinear limits in conservative and in parity-time PT symmetric models. The compactons result from the interference of the fields in the two lines of waveguides ensuring that the third (middle) line caries no energy. PT-symmetric compactons require not only the presence of gain and losses in the two lines of the waveguides but also complex coupling, i.e. gain and losses in the coupling between the lines carrying the energy and the third line with zero field. The obtained compactons can be stable and their branches can cross the branches of the dissipative solitons. Unusual bifurcations of branches of solitons from linear compactons are described.

http://arxiv.org/abs/1310.5328

Optics (physics.optics); Pattern Formation and Solitons (nlin.PS)