Necessity of PT symmetry for soliton families in one-dimensional complex potentials

Jianke Yang

For the one-dimensional nonlinear Schroedinger equation with a complex potential, it is shown that if this potential is not parity-time (PT) symmetric, then no continuous families of solitons can bifurcate out from linear guided modes, even if the linear spectrum of this potential is all real. Both localized and periodic non-PT-symmetric potentials are considered, and the analytical conclusion is corroborated by explicit examples. Based on this result, it is argued that PT-symmetry of a one-dimensional complex potential is a necessary condition for the existence of soliton families.

http://arxiv.org/abs/1310.4490
Pattern Formation and Solitons (nlin.PS); Optics (physics.optics)

Add Your Comments